
Cerberus design proposal

Principles

Goal : manage Cerberus development

● Use industry standard (no grails or too volatile tools)

● Fix coding guidelines

● Follow coding

Standard transversal layering

DAO

SERVICE

FRONT

JSP/Servlet

Java

Java

Javascript, jquery,
jqplot, tiles, JSTL

Basis technology encapsulated

presentation

- jsp and servlet logic
- input control
- controllers that call service

business logic

- core services : testing, lauching, CRUD exposition
- called by controller
- call DAO and required utility classes

data access

- link between database and Java
- translate tables to Java objects

Frameworks inclusion

JPA

Hibernate

Spring

- core
(annotations)
- AOP (log)

DAO

Service

Front

(MVC)

Spring MVC

JSP/Servlet

Java

Java

Spring MVC

JSP/Servlet

Spring

- core
(annotations)
- AOP (log)

Java

Spring Data

Java / JPA

1 of 2
previous
solutions

Other popular web
framework

Wicket, Struts,
Grails, JSF, GWT

JSP/Servlet

Javascript Javascript, jquery,
jqplot, tiles, JSTL

Javascript, jquery,
jqplot, tiles, JSTL

Frameworks benefits : Front (1/X)

● JQuery : ajax calls, Javascript library
● JQPlot : reporting

● JSTL
○ avoid importing variables in JSP
○ avoid Java <% %> in JSP : proper loop, display
○ Java standard

● Tiles
○ templating : header/footer automated inclusion

Frameworks benefits : Front (2/X)
● Spring MVC

○ proper responsibility concerns between JSP/Java
○ get rid of servlet parameters parsing
○ configuration simplification

Frameworks benefits : Service

● Spring Core
○ dependency injection
○ transactions management
○ configuration with annotations or XML : to define

● Spring AOP
○ transversal concerns centralization
○ avoid calling utility classes if service always needed

■ eg : logging of all calls and parameters (Security sanitizer)

Frameworks benefits : DAO (1/X)
● JPA

○ Java to physical table mapping & avoid manual transformation
between SQL to Java objects

○ provide standard CRUD operations
○ Reduce dependency with vendor MySQL, Postgresql, ...
○ Manage relationships between objects
○ Java standard

Frameworks benefits : DAO (2/X)

● Spring Data
○ simplify data access layer
○ simplify storage solution change
○ framework not yet mature
○ if no spring data required, we can still implement pattern manually I

can provide that will provide for any entity classe CRUD operations
(findAll, findById, delete, ...)

Project structuration (1/X)

● standard properties files

● exclude text from jsp in properties files (and enable
internationalization)

● separate views / web / ioc config

● database configuration in XML file, not in code

Project structuration (2/X)
pom.xml => maven file

Java
src/main/java => source code controller, service, dao, etc

src/main/resources
src/main/resources/dbre.xml => if we use JPA with xml file
src/main/resources/log4j.properties => logging config, rolling file, output, render
src/main/resources/META-INF/persistence.xml => hibernate or any JPA compliant configuration
src/main/resources/META-INF/spring/applicationContext.xml => global config, wiring of all
src/main/resources/META-INF/spring/database.properties => connection pool configuration

src/test/java => same package for class under test

src/test/resources
src/test/resources/db.properties
src/test/resources/test-context.xml
src/test/resources/test-db.xml
src/test/resources/log4j.xml

documentation/design
licence.txt

Project structuration (3/X)
Web
src/main/webapp/WEB-INF

src/main/webapp/WEB-INF/web.xml
src/main/webapp/WEB-INF/spring/*.xml webmvc-context.xmlioc-context.xml, db-context.xml
src/main/webapp/WEB-INF/views/views.xml

src/main/webapp/WEB-INF/classes if we want to change css on the fly
src/main/webapp/WEB-INF/layouts tiles for HTML templating, avoid including header etc
src/main/webapp/WEB-INF/messages messages.properties, messages_fr.properties

src/main/webapp/WEB-INF/views/<structure>/*.jsp

src/main/webapp/resources/styles css
src/main/webapp/resources/ images pictures files
src/main/webapp/resources/ plugin jqplot, jquery folder with sources in

Java packages : com.redcats.tst.

util

> parsing, string,
date

dto

> object map
through layers but
no table link

service

service.impl

entities

> mapping with
tablesdao

dao.impl

aspect

controller
Front

(MVC)

Service

DAO

Transversal concerns that
have to be calls

by other

Transversal concerns that is
executed at some point

eg: logging

entities
> mapping with
tables

servlet

log

database

config

factory

> object creation

Factory
● encapsulate

○ object creation
○ creation rule
○ only classes with "new" keyword

Entities
● 1 to 1 mapping with physical table
● Configure relationships
● Only JPA annotations
● Always

○ getters, setters : access encapsulation
○ hashcode and equals : for serialization

DTO
● Data Transfert Objects
● Objects that transit between layers but without physical

storage
● Typical usage for reporting objects to build
● Use entity with calculated fields pattern and rule

calculated on loading if some fields are not stored in db

Util
● Classes calls by other classes for specific treatment
● No instantiation

○ Private constructor & static methods
● Check existing standards for strings, date (Apache)

Aspect

Controller
can easily standardize urls
*.configuration
*.execution
*.reporting

Code convention
● naming

○ interfaces starts with "I"
○ no visibility on interface methods
○ implementation

■ in /impl directory
■ if 2 implementation, explicit name

● dependencies with interfaces, not implementation

● javadoc on all interfaces

Testing

DAO

Service

Front

(MVC)

JUnit Mockito

JUnit Spring context

Selenium
integrated

no cerberus
directly

=> Integration testing
=> Functional testing

=> Unit testing

=> DB Integration testing
=> Unit testing

Test typology

Test convention
● Same package as tested class
● naming

○ same as tested class
○ prefix by "Test"

src/main/java/com/redcats/tst/dao/ITestCaseDAO
src/main/java/com/redcats/tst/dao/impl/TestCaseDAOImpl

src/test/java/com/redcats/tst/dao/impl/TestTestCaseDAOImpl

Test example : DAO

Test example : Service

Build
goal
● repeatable build in any environment
● easier test configuration

today issues
● no tests, part due to lack of proper build in place
● no repeatable build

from maven test
1. setup in-memory database or still use local
2. recreate database structure / truncate tables
3. execute sql script
4. execute unit test
5. execute sql script
6. execute integration test
7. package
8. to decide how to manage changes in UAT/prod

Detailed frameworks versions

● Front
○ Spring MVC 3.2.3 Release

● Service
○ Spring 3.2.3 Release

● DAO
○ Hibernate 3.2

can use spring roo to generate project structure or at least get all dependencies

Migration plan proposal

1. Get to one project : services + GUI

2. Standardize

3. Progressive framework integration
○ Spring IOC
○ Spring MVC
○ Spring Data / Hibernate

Migration plan : gap analysis

Get to one project : services + GUI
● integrate GUI files progressively, commit regulary
● remove old SVN files
● migrate all developers connectivity
● remove unused jenkins jobs
● remove unused packages on glassfish

Migration plan : gap analysis

Standardize
● code review priority 1 fix - main :

○ externalize database configuration
● properties files externalization
● enable repeatable build

○ sql script or unit test data in each class
○ selenium test for integration testing

● fix unit test DAO integration
● fix unit test service in isolation

Migration plan : gap analysis

Progressive framework integration
● Spring IOC - already there but need to

○ organize property files like specified
○ standardize naming conventions

● Spring Data / Hibernate
○ configuration file
○ implement DAO pattern for all CRUD
○ remove unecessary code replaced by patterns

● Spring MVC
○ setup configuration files
○ setup Tiles template header/footer
○ progressively migrate JSP with integration test on GUI (with JSTL &

Tiles)

Decisions to take

● Frameworks stack

● Migration plan

● Next actions

